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Integrating Pathway Analysis and Genetics
of Gene Expression for Genome-wide Association Studies

Hua Zhong,1,3,* Xia Yang,1 Lee M. Kaplan,2 Cliona Molony,1,4 and Eric E. Schadt1,5

Genome-wide association studies (GWAS) have achieved great success identifying common genetic variants associated with common

human diseases. However, to date, the massive amounts of data generated from GWAS have not been maximally leveraged and inte-

grated with other types of data to identify associations beyond those associations that meet the stringent genome-wide significance

threshold. Here, we present a novel approach that leverages information from genetics of gene expression studies to identify biological

pathways enriched for expression-associated genetic loci associated with disease in publicly available GWAS results. Specifically, we first

identify SNPs in population-based human cohorts that associate with the expression of genes (eSNPs) in the metabolically active tissues

liver, subcutaneous adipose, and omental adipose. We then use this functionally annotated set of SNPs to investigate pathways enriched

for eSNPs associated with disease in publicly available GWAS data. As an example, we tested 110 pathways from the Kyoto Encylopedia

of Genes and Genomes (KEGG) database and identified 16 pathways enriched for genes corresponding to eSNPs that show evidence of

association with type 2 diabetes (T2D) in the Wellcome Trust Case Control Consortium (WTCCC) T2D GWAS. We then replicated these

findings in the Diabetes Genetics Replication and Meta-analysis (DIAGRAM) study. Many of the pathways identified have been proposed

as important candidate pathways for T2D, including the calcium signaling pathway, the PPAR signaling pathway, and TGF-b signaling.

Importantly, we identified other pathways not previously associated with T2D, including the tight junction, complement and coagula-

tion pathway, and antigen processing and presentation pathway. The integration of pathways and eSNPs provides putative functional

bridges between GWAS and candidate genes or pathways, thus serving as a potential powerful approach to identifying biological mech-

anisms underlying GWAS findings.
Genome-wide association studies (GWAS) have revolution-

ized our ability to localize and identify the causal determi-

nants for common human diseases over the past several

years, delivering an unprecedented number of DNA loci

associated with a diversity of common human diseases

such as type 1 diabetes (T1D),1 coronary artery disease,2

HIV-1 infection,3 and type 2 diabetes (T2D).3–8 However,

GWAS do not necessarily lead directly to the gene or

genes in a given locus associated with disease, and they

do not typically inform the broader context in which the

disease genes operate, thereby providing limited insights

into the mechanisms driving disease.9–11 Furthermore,

the amount of genetic variation explained by GWAS for a

given disease is most often significantly less than the heri-

tability estimated for the disease. For example, a number of

studies estimate the genetic heritability for T2D to be as

high as 40%,12 but the 18 DNA loci identified for T2D

to date account for only ~3% of the variation in T2D.7

This raises the question of whether there are many more

common DNA variants with smaller effects that are not

being identified in the GWAS because of a lack of power,

whether there are many more rare variants with stronger

effects that explain the missing variation, or whether it is

some combination of these two explanations.13,14

Biological pathway-based analysis is a complementary

approach to single-point analyses. Generally, this type of

approach tests whether a set of genes from a biological
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pathway are associated with a disease trait of interest.

Gene Set Enrichment Analysis (GSEA) represents one of

the first approaches of this type developed to identify

gene sets, rather than individual genes, from gene expres-

sion data that are associated with phenotypes of interest.15

A modified version of GSEA was recently developed for anal-

ysis of GWAS data, in which SNP sets derived from biological

gene sets are collectively tested for association to disease.16

This modified GSEA method has been applied to T2D

GWAS17 and has been evaluated to assess whether it

could help prioritize biological pathways associated with

T2D.18 Variations of this approach using a hypergeometric

model have been developed to determine pathways

that were enriched for seven common diseases with the

use of GWAS results,19 and other more flexible methods to

combine association evidence of SNPs or genes within a

pathway have also been developed.20 A common theme in

all of these developments has been to analyze GWAS data

by testing for association of a pathway rather than testing

individual genes in order to identify multiple variants asso-

ciated with disease in multiple related genes, in which the

variants individually do not necessarily meet the GWAS

genome-wide significance threshold.16 In some cases, these

approaches have provided important biological insights

into the mechanisms underlying disease pathogenesis.

There is one open yet very important question when

trying to perform pathway-based analysis by using GWAS
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data. A typical gene may span tens to hundreds of common

SNPs, yet only one or a few of them may be functional or

linked closely enough to the underlying causative variant

to serve as a useful surrogate.16 Several approaches have

been devised to represent any given gene by one or more

SNPs from GWAS data. The maximum statistic for all SNPs

near a gene has been used to represent the significance of

the gene,16,19 and linkage disequilibrium (LD) information

has also been used to map the significant SNPs to adjacent

genes.18 However, most SNPs in a gene region will not repre-

sent functional variants of the gene, and a true disease-

associated gene may have multiple independent functional

variants. Furthermore, a gene may be regulated in trans by

DNA variants that are far away from the structural gene.11

In this paper, we propose and demonstrate that by inte-

grating information from genetics of gene expression

(GGE) studies and pathway-based analyses in GWAS

provides for additional power to uncover important biolog-

ical pathways and insights into disease etiology.

GGE studies have provided a way to address several of the

limitations of conventional GWAS analysis.10,11,21–23 By

mapping the genetic architecture of gene expression in

human populations, GGE studies can provide functional

support for candidate genes within a given locus.11,21,24

One way that GGE studies can affect interpretation of

GWAS is to provide links between significant GWAS SNPs

and genes whose expression levels have been associated

with those DNA variants.11 Recently, detailed GGE studies

have profiled transcripts and genotyped SNPs across the

human genome in moderate to large population-based

human cohorts.11,23,25,26 These GGE studies resulted in

the detection of SNPs associated with gene expression

(termed expression SNPs or eSNPs) in disease-relevant

tissues. The eSNPs can be considered as functionally rele-

vant SNP sets for genetic analysis and provide a biological

justification for using the p values of the corresponding

eSNPs to represent the significance levels of a gene with

respect to disease association.

On the basis of eSNPs discovered from liver and adipose

tissues of two independent human cohorts,11 we derived

eSNP sets that represent genes in pathways defined by

the Kyoto Encylopedia of Genes and Genomes (KEGG)

pathway database.27 We then extracted the GWAS associa-

tion p values of these pathway-dependent eSNPs to T2D

traits from the Wellcome Trust Case Control Consortium

(WTCCC) cohort28 and analyzed the enrichment of low-

association p values among these pathway eSNPs. We repli-

cated a large proportion of the identified top pathways by

using GWAS results from the Diabetes Genetics Replication

and Meta-analysis (DIAGRAM) Consortium. This integra-

tive genomics approach allows us to address whether

GGE studies can help uncover important biological genes

and pathways that underlie the complex etiology of T2D

that may otherwise be missed by merely focusing on indi-

vidual significant GWAS SNPs.

The first GGE study profiled more than 39,000 tran-

scripts and genotyped 782,476 unique SNPs in more
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than 400 liver samples from people of European descent.11

This genetics of gene expression study resulted in the

detection of 3309 unique eSNPs at a false discovery rate

(FDR) % 10%.11 The second multitissue GGE cohort

comprised patients of European descent who underwent

Roux-en-Y gastric bypass surgery. Liver, subcutaneous

adipose, and omental adipose tissues were collected from

each patient at the time of surgery at Massachusetts

General Hospital. Genomic DNA was extracted from liver

tissues, and total RNA was extracted from liver, subcuta-

neous adipose, and omental adipose tissues. Each RNA

sample was profiled on a custom 44K Agilent array, and

each DNA sample was genotyped on an Illumina 650Y

BeadChip array. Successful gene expression profiling

results were collected from 707 liver samples, 916 omental

adipose samples, and 870 subcutaneous adipose samples.

The method for identifying eSNPs was detailed by

Schadt et al.11 In brief, the gene expression data were first

adjusted by age, race, gender, and surgery year in a linear

model, and then the expression-SNP correlation was

analyzed with the use of the adjusted expression data. All

expression traits were tested for association with each of

the genotyped SNPs meeting the quality control (QC)

criteria. The association p values were adjusted to control

for testing of multiple SNPs and expression traits with

the use of an empirically determined FDR constrained

to be % 10%.11 These two GGE cohorts allowed us to iden-

tify a total of 20,563 distinct eSNPs to 9964 known

genes (8693, 11,742, and 11,392 eSNPs identified from

liver, omental adipose, and subcutaneous adipose tissues,

respectively). In comparing eSNPs identified in indepen-

dent tissues from the same cohort, there was considerable

overlap between any given pairing of tissues: 72.0% of

the eSNPs identified in liver, 79.0% of those found in

omental adipose, and 80.5% from subcutaneous adipose

were also found in the other two tissues. Thus, each

tissue provides approximately ~30% tissue-specific eSNPs

detectable in the studied samples (H.Z., unpublished

data; under revision at PLoS Genetics, manuscript available

upon request).

To generate T2D association p values for the eSNPs

derived from the GGE studies, we used individual-level

genotype data on 393,143 autosomal SNPs in 1924 cases

and 1500 population-based controls (UK Blood Services

controls) generated from the WTCCC T2D study.28 Because

different SNP panels were used in the different GGE studies

and GWAS, many of the eSNPs were not genotyped in

WTCCC. Therefore, using the WTCCC data, we imputed

genotypes for autosomal eSNPs that were present in

HapMap Phase II but were not present in the Affymetrix

500K chip used by WTCCC or did not pass direct genotyp-

ing QC (QC standards detailed in the WTCCC publica-

tion28). Genotypes were imputed with the use of the

genotype data from WTCCC and phased HapMap II geno-

type data from the 60 CEU HapMap founders. Imputation

was performed with the software package MACH 1.0.29

We retained SNPs that had an estimated minor allele
010



frequency > 0.01 in the control sample. Only those with

high imputation confidence (R2 > 0.4) were included in

the analysis.7 Imputed SNPs were then tested for T2D

association. Summary association statistics from the

DIAGRAM Consortium, which combines the results from

the WTCCC,28 the Diabetes Genetics Initiative (DGI),4 and

Finland–United States Investigation of NIDDM Genetics

(FUSION),5 were used for validation.

In addition to using DIAGRAM as a validation cohort, we

used a weighted subtraction algorithm to derive T2D asso-

ciation p values from the samples in DIAGRAM, excluding

the WTCCC samples. The DIAGRAM association statistics

were derived from a fixed-effect weighted average of the

summary Z scores from the three cohorts,7,30 which

comprised 10,128 samples in total (4862 WTCCC samples,

2931 DGI samples, and 2335 FUSION samples). The

cohort-specific weight was proportional to the square

root of the effective number of individuals in the cohort;

the squared weights were chosen to sum to 1.7 Therefore,

the Z score of non-WTCCC samples can be approximated

by ZNon�WTCCC ¼ ZDIAGRAM �WWTCCCZWTCCC=WNon�WTCCC,

in which ZDIAGRAM and ZWTCCC are the Z scores converted

from the two-sided p values from DIAGRAM and WTCCC,

respectively. We then converted ZNon-WTCCC to a two-sided

p value, PNon-WTCCC, which represented the association

significance from the non-WTCCC samples.30 ZDIAGRAM

and ZWTCCC were assumed to have the same sign; thus,

the same allelic effect direction was assumed in the

WTCCC and DIAGRAM results. Note that although the

WTCCC cohort contains 1924 cases and 2938 controls,

the effective WTCCC sample size is expected to be less

than 4862 because of the imbalance in sample size

between cases and controls. Further, we imputed the unas-

sayed SNP genotypes on the basis of individual-level

WTCCC genotype data of 1924 cases and 1500 controls.

Therefore, the effective sample size and the weight of

WTCCC data were approximated by 1924 þ 1500 ¼ 3424

and WWTCCC ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3424=10128

p
¼ 0:58, respectively. The

effective sample sizes of DGI and FUSION studies were

approximated by the actual sample sizes, because the cases

and controls are quite balanced in each study. The weight

of non-WTCCC samples was calculated as WNon�WTCCC ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2931þ 2335=10128

p
¼ 0:72.

To minimize multiple-testing concerns, we chose to use

KEGG pathways because these represent relatively well-

defined known biological pathways, rather than the more

broad functional categories defined in other databases

such as Gene Ontology (GO).31 Although our method can

be applied to GO-derived gene sets, GO has a hierarchical

structure that results in thousands of pathways for testing

and hence increases multiple testing if all depths are consid-

ered. If analyses were restricted to a particular GO level, the

presence of highly varied depths among GO terms may

affect the reliability of statistical significance tests.32 There-

fore, use of gene sets derived from GO must proceed with

caution. Out of all of the KEGG human pathways, we tested

110 pathways that contained between 20 and 200 genes
The Am
associated with eSNPs. The cutoff of 20–200 genes was

selected as the optimal range for gene sets on the basis of

the power of the algorithm17 and of avoiding the artificial

significance of large gene sets introduced by larger number

of comparisons.18 We note that pathways containing

between 10 and 300 genes associated with eSNPs produced

similar results (data not shown). To better characterize the

sensitivity and specificity of our approach, we designed

two artificial positive control pathways17 and ten artificial

negative control pathways. The first positive-control

pathway contained 18 genes that were most adjacent to

the 18 replicated SNPs from the WTCCC GWAS;33 the other

positive control pathway contained the same genes but

was diluted by the addition of 40 genes that were randomly

selected from the set of genes associated with at least one

eSNP (per gene) across the human genome. The negative

control pathways were composed of genes randomly

selected from the set of genes associated with at least

one eSNP across human genome, but excluding the 18

genes identified in the WTCCC GWAS. The gene counts

of the negative control pathways ranged from 20 to 200

in increments of 10 (20, 40, ., 200). These artificial control

pathways were analyzed together with the 110 KEGG

pathways.

We modified the algorithm proposed by Wang et. al16 to

integrate the eSNP information into the pathway-based

GWAS analysis. Each SNP was tested for T2D association,

producing a p value (referred to here as PT2D). In our inte-

grative genomics algorithm, we represented a gene by the

eSNPs significantly associated with that gene’s abundance

of transcript(s) in liver or adipose tissue in any of the GGE

studies considered. When one eSNP was located within

the shared regions of two overlapping or neighboring

genes and associated with both gene expression levels,

we mapped the eSNP to both genes. We assigned the

PT2D of the eSNP mapped to the gene as the PT2D of the

gene. When multiple eSNPs were identified as associated

with the same gene, the eSNP with the most significant

PT2D was taken as the eSNP for the gene, and that eSNP

was designated as the representative eSNP. From our obser-

vations, when there were multiple detected cis-eSNPs for

a given gene, they were usually located in a single LD

block. That is, the multiple eSNPs for a given gene were

usually detected because of their correlations to each

other and/or their correlations with the true causal eSNP.

Therefore, using all of these eSNPs would not add more

independent information. The significance of each gene

set (denoted by Enrichment Score, ES*(s), s ¼ 1.S, in

which S is the number of tested gene sets) was judged

with the use of a Kolmogorov-Smirnov one sided test

statistic on the basis of the deviation from a uniform

distribution of equal size. Ten thousand permutations

were performed, in which the T2D case-control label was

randomized, for evaluation of the significance level of

the gene set. In each permutation (denoted by d ¼ 1.D,

in which D ¼ 10,000, total number of permutations), we

repeated the above three steps—i.e., (1) test for SNP-T2D
erican Journal of Human Genetics 86, 581–591, April 9, 2010 583



Table 1. Pathways with Significant Enrichment in the WTCCC data and Significant or Suggestive Enrichment in the DIAGRAM or non-WTCCC Replication Data

Pathway Enrichment p Value eSNP PT2D

Pathwaya Gene Count
Genes with
eSNP FDRb WTCCCc Diagramd Non-WTCCCe

Genes with
p < 0.01f eSNP WTCCC Diagram Non-WTCCCe

Tight junction 186 39% 0.06 1.20 3 10�3 5.40 3 10�3 9.61 3 10�2 MYH1 rs1989811 4.40 3 10�5 1.60 3 10�4 5.23 3 10�2

MYH2 rs2097657 4.40 3 10�5 4.30 3 10�4 1.12 3 10�1

EXOC4 rs6976491 2.10 3 10�4 6.70 3 10�4 8.39 3 10�2

CLDN23 rs2976929 4.30 3 10�4 6.90 3 10�3 3.64 3 10�1

CSNK2B rs1077394 5.50 3 10�4 2.10 3 10�5 1.85 3 10�3

Adherens junction 110 45% 0.18 7.40 3 10�3 2.40 3 10�2 8.08 3 10�2 CSNK2B rs1077394 5.50 3 10�4 2.10 3 10�5 1.85 3 10�3

Calcium signaling
pathway

239 39% 0.19 9.60 3 10�3 1.60 3 10�2 3.20 3 10�1 PDE1A rs6711862 2.30 3 10�2 1.70 3 10�3 1.18 3 10�2

GRIN2C rs6501741 3.00 3 10�2 7.10 3 10�3 4.73 3 10�2

ITPR1 rs4684443 1.70 3 10�2 8.00 3 10�3 7.95 3 10�2

AGTR1 rs16861027 3.30 3 10�2 8.30 3 10�3 5.22 3 10�2

Hematopoietic cell
lineage

120 33% 0.19 1.70 3 10�2 3.60 3 10�2 3.66 3 10�1 CR1 rs1323720 6.30 3 10�3 6.30 3 10�3 1.13 3 10�1

HLA-DQA1/
HLA-DRB1/
HSPA1B

rs1077394 5.50 3 10�4 2.10 3 10�5 1.85 3 10�3

HLA-G rs2256902 8.10 3 10�4 1.10 3 10�3 6.80 3 10�2

Complement and
coagulation cascades

108 46% 0.19 1.80 3 10�2 5.30 3 10�2 1.65 3 10�2 CR1 rs1323720 6.30 3 10�3 6.30 3 10�3 1.13 3 10�1

C4A/B rs1077394 5.50 3 10�4 2.10 3 10�5 1.85 3 10�3

C5 rs10818503 4.50 3 10�3 8.80 3 10�3 1.79 3 10�1

PPAR signaling pathway 92 43% 0.2 2.90 3 10�2 2.70 3 10�2 6.46 3 10�1 PPARD rs9368849 7.60 3 10�4 1.70 3 10�3 1.02 3 10�1

SCD rs11190462 9.20 3 10�2 6.10 3 10�3 1.45 3 10�2

Ether lipid metabolism 45 51% 0.2 3.10 3 10�2 2.40 3 10�1 8.03 3 10�2 AGPAT6 rs919035 1.40 3 10�1 3.20 3 10�3 3.75 3 10�3

TGF-b signaling pathway 134 45% 0.2 3.50 3 10�2 2.10 3 10�2 5.44 3 10�2 RBL2 rs4784312 2.30 3 10�4 8.80 3 10�4 1.00 3 10�1

INHBB rs11677557 5.60 3 10�1 3.50 3 10�3 3.44 3 10�4

SMURF2 rs17401012 1.50 3 10�1 9.20 3 10�3 1.42 3 10�2

Antigen processing and
presentation

119 41% 0.46 3.90 3 10�2 3.34 3 10�4 2.12 3 10�3 HLA-DQA1/
HLA-DRB1/ HSPA1B

rs1077394 5.50 3 10�4 2.10 3 10�5 1.85 3 10�3

HLA-B/ HSPA1L rs2260000 1.80 3 10�3 7.20 3 10�4 2.98 3 10�2
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association and record Pd
T2D for each SNP; (2) take the most

significant Pd
T2D among all of the eSNPs corresponding to

a given gene as the Pd
T2D of the gene; (3) calculate the

ES(s,d) for the gene set. The permutation approach gives

an empirical distribution for the ES score for a set of

genes under no association while keeping their LD

structure unchanged.16 A nominal significance level for

ES*(s) was computed as the fraction of all permutations

whose ES(s) is higher than ES*(s). To compare gene sets

of different size and adjust for multiple-hypothesis testing,

a normalized enrichment score (NES) was then produced:

NES � ðsÞ ¼ ES � �mean½ESðs,dÞ�=SD½ESðs,dÞ�.16 The FDRs

corresponding to an NES*(s) were computed as the ratio

between the fraction of the NESs of all gene sets in all

permutations higher than NES*(s) and the fraction of the

NES*s of all gene sets higher than NES*(s) in the observed

data.16 The GSEA algorithm used a weighted Kolmo-

gorov-Smirnov statistic to calculate the excess of associa-

tion signals in each pathway.15,16 In our modified algo-

rithm, we computed a test statistic for a gene only if the

gene corresponded to an eSNP. Thus, there is no rank

statistic for a gene with the reference being all of the genes

represented by SNPs in the GWAS. Therefore, we adopted

a regular Kolmogorov-Smirnov one-sided statistic to quan-

tify the excess of association signals compared to a random

uniform distribution.

Twenty-three out of the 110 KEGG pathways (21%)

reached a nominal p value % 0.05 on the basis of the

WTCCC GWAS results, four times higher than the number

expected by chance (0.05 3 110 ¼ 5.5), suggesting that

T2D genes possibly fall in multiple pathways. Sixteen of

these 23 pathways reached an FDR of less than 20%

(Table 1; full significance results of 110 KEGG pathways

in Table S1, available online). These include known

candidate T2D pathways such as PPAR signaling, calcium

signaling, TGF-b signaling, cell communication, and pan-

creatic cancer pathway. It is of note that some of the iden-

tified significant KEGG pathways have many overlapping

genes. For example, 86% of the genes in the N-Glycan

biosynthesis pathway are also in the pathway Glycan

structures–biosynthesis 1, with genes encoding manosi-

dases and mannosyltransferases, being the common

driving genes for the observed enrichment for both path-

ways, and genes encoding carbohydrate sulfotransferases

being the additional driving genes for the overrepre-

sentation of the Glycan structures–biosynthesis pathway.

Approximately 60% of the genes in the bladder cancer

pathway are also in the pancreatic cancer pathway, with

oncogenes CCND1 (MIM *168461) and KRAS (MIM

*190070) as well as those encoding vascular endothelial

growth factors VEGFA (MIM þ192240) and VEGFB (MIM

*601398) being the key common genes that drive the

enrichment of both pathways, and the signal transduction

genes SMAD3 (MIM *603109) and MAPK10 (MIM *602897)

being additional genes that drive the significance of the

pancreatic cancer pathway. Therefore, the correlation

among KEGG pathways contributes to the observed excess
erican Journal of Human Genetics 86, 581–591, April 9, 2010 585



number of enriched pathways, with core genes driving the

enrichment of multiple pathways.

Both artificial positive control pathways were ranked as

the top pathways identified by our procedure. Among the

18 T2D genes derived from the replicated GWAS SNPs, six

genes, namely NOTCH2 (MIM *600275), ADAMTS9 (MIM

*605421), JAZ1, TSPAN8 (MIM *600769), PPARG (MIM

*601487), and CDKAL1 (MIM *611259) had at least one

eSNP (eSNPs detailed Table S2). On the basis of the

HapMap data, four out of the six eSNPs that we used to

represent these six GWAS genes were in reasonable LD

with the corresponding GWAS hits and thus are representa-

tive of the known T2D SNPs. However, the eSNP for PPARG

was not in LD with the GWAS SNP, and the eSNP for

CDKAL1 is over 600 kb away from the GWAS SNP. These

two eSNPs may themselves be functional or in LD with

other functional SNPs (the LD structures between eSNPs

and GWAS SNPs are detailed in Table S3). The positive

control pathway corresponding to these six genes had

a nominal p < 0.0001 (FDR < 0.0001). The other 46-gene

positive control pathway had a p ¼ 0.0006 (FDR ¼ 0.005).

Although the 18 GWAS genes were only neighboring

genes of replicated GWAS SNPs and may not necessarily

represent functionally validated T2D causal genes, some

of these 18 genes, especially the six genes with eSNPs that

show strong T2D association, may be more likely to repre-

sent true T2D causal genes. Thus, it is encouraging to

observe the highly significant enrichment of these path-

ways as a positive control of our approach.

The 20-gene negative control pathway had a p ¼ 0.45,

whereas the 200-gene negative control pathway had

a p ¼ 0.33, neither of which corresponded to an FDR < 1

(Table S1). The p values for the other ten negative control

pathways tended to get smaller as the gene sets became

larger, confirming the previously noted bias of large gene

sets in this type of pathway-based approach.18 However,

an alternative explanation for this trend could be that

the eSNPs derived from liver and adipose represent a func-

tional set of SNPs that themselves are enriched for associ-

ating with T2D. The fact that these SNPs are significantly

correlated with gene expression in T2D-related tissues

provides for the possibility that they may tend to be

slightly enriched for association to T2D in comparison to

randomly selected SNPs across the human genome, where

the inverse relationship between enrichment p value and

set size could reflect the increasing power expected with

increasing set sizes. We believe that this strengthens the

power of our approach to detect stronger signals for true

disease-correlated pathways, although it may also slightly

contribute to the excess number of enriched pathways

that we observed.

We next sought to replicate these findings by investi-

gating the PT2D for the eSNPs corresponding to the genes

for the 23 KEGG pathways identified from the WTCCC

T2D GWAS with a p value % 0.05 by using summary-level

data from the DIAGRAM Consortium and the derived

significance of the association in the DIAGRAM samples,
586 The American Journal of Human Genetics 86, 581–591, April 9, 2
excluding the WTCCC samples (PNon-WTCCC). We tested

whether PDIAGRAM-T2D and PNon-WTCCC for the eSNPs corre-

sponding to genes in a given pathway were significantly

different from a uniform distribution based on a Komo-

gorov one-sided statistic, respectively. From the DIAGRAM

samples, nine pathways,—tight junction, adherens junc-

tion, neuroactive ligand-receptor interaction, calcium sig-

naling, hematopoietic cell lineage, N-Glycan biosynthesis

(Glycan structures–biosynthesis 1), PPAR signaling, TGF-b

signaling, and antigen processing and presentation path-

way—showed deviations from the null distribution

(p value % 0.05 in Table 1 and Figure 1). The complement

and coagulation cascades pathway showed a marginal

significance level (p ¼ 0.053). From the non-WTCCC

samples, complement and coagulation cascades pathway,

TGF-b signaling pathway, and antigen processing and

presentation pathway showed deviations from the null dis-

tribution. Adherens junction, ether lipid metabolism path-

way, and tight junction demonstrated a consistent trend

in the same direction as that observed in the WTCCC,

but at suggestive significance levels (p ¼ 0.080, p ¼
0.081, and p ¼ 0.096, respectively; Table 1 and Figure 1).

The significance patterns were fairly consistent between

the non-WTCCC and the WTCCC studies for the repli-

cated pathways. Only genes and their representative eSNPs

with DIAGRAM PT2D % 0.01 for each consistent pathway

are listed in Table 1, although we note that there are

many more eSNPs associated with each pathway. Notably,

each of the individual eSNPs showed only subtle T2D asso-

ciations, supporting the hypothesis that many genes with

small effect sizes together contribute to T2D.4,7,16 Details

of the pathway genes, their corresponding eSNPs, expres-

sion tissues, eSNP-expression-correlation p values, eSNP

WTCCC PT2D, and eSNP DIAGRAM PT2D are shown in

Table S2.

A majority of the pathways identified from this study,

such as calcium signaling, PPAR signaling, N-glycan biosyn-

thesis, TGF-b signaling, and cell communication, have been

implicated as important T2D pathways in the literature.

For example, calcium signaling is crucial for insulin secre-

tion in pancreatic b-cells34,35 as well as insulin-mediated

glucose uptake in skeletal muscle.36–38 PPAR signaling

plays a critical role in glucose homeostasis and insulin

sensitivity, and PPAR-gamma agonists such as thiazolidine-

diones have been used to treat T2D.39–42 N-glycan defi-

ciency in glycoproteins has been linked to islet damage

and T2D.43–45 TGF-b signaling has been implicated to be

important for pancreatic islet development.46,47 Islet-to-

islet or b-to-b cell communication has shown to be the basis

for insulin secretion.48,49 The hematopoietic cell lineage

pathway reflects mainly the immune response and the

inflammatory pathway, which have been extensively

linked to diabetes and obesity.50,51

Not only does our approach support the above men-

tioned pathways with significant enrichment scores, it

provides support for less characterized candidate path-

ways for roles in T2D, including tight junction, adherent
010



Figure 1. Quantile Quantile Plots of the Representative eSNP p values for the Eight Pathways
The eight pathways are: (A) adherens junction, (B) antigen processing and presentation, (C) complement and coagulation cascades, (D)
ether lipid metabolilsm, (E) hematopoietic cell lineage, (F) TGF-b signaling pathway, (G) tight junction, and (H) PPAR signaling pathway.
On each plot, the x axis is –log10 of the expected p values of an equally sized set of SNPs under a uniform distribution. The y axis is –log10
of the observed p values. The SNPs presented in each plot are the representative eSNPs for genes in the corresponding pathway. The
representative eSNPs are identified on the basis of WTCCC PT2D. Red dots represent their p values (PT2D) based on WTCCC. Blue triangles
represent their p values (PT2D) based on DIAGRAM meta-analysis. Green diamonds represent their p values (PT2D) based on DIAGRAM
samples excluding the WTCCC detection samples. Black solid lines denote the uniform null distribution. Dashed lines denote 95%
confidence intervals of deviation from the null distribution.
junction, complement and coagulation, and antigen pro-

cessing and presentation. Their enrichment patterns were

replicated with the use of the DIAGRAM meta-analysis

data (Figure 1). As the most significant pathway from

our analysis, tight junction has been implicated mainly in

complications of diabetes, such as nephropathy and reti-

nopathy, because of its function in modulating intercellular

permeability.52–55 However, there is evidence supporting

a role for tight junction molecules in the regeneration of

pancreatic islets and the pathogenesis of T1D.56,57 The ad-

herens junction pathway may affect T2D in a similar

fashion. The complement and coagulation pathway may

mediate T2D indirectly through its effect on obesity.58–60

The antigen processing and presentation pathway has

been associated with T1D in large-scale GWAS;28,61 its rela-

tionship with T2D has also been implicated.62

Mootha et al. have previously shown that oxidative

phosphorylation is associated with diabetes through the

use of gene expression profiling.61 In our analysis using

GWAS data, the oxidative phosphorylation pathway has

an enrichment p value of 0.087. Therefore, we were not

able to replicate the oxidative phosphorylation pathway.

One possible explanation is, as Perry et al. discussed, that

the changes in oxidative phosphorylation gene expression

may be a result of the T2D status, rather than the cause of
The Am
T2D, as others have suggested.17 It is of particular note

that our method focuses on causal pathways, given that

genetic variations represent causal anchors that enable

causal inference, whereas gene-expression-based analysis

cannot typically differentiate causal from reactive path-

ways. Among the previous pathway-based GWAS, six

KEGG pathways with a nominal p % 0.05 had been

identified.17 Of these six pathways, we confirmed the

TGF-b signaling pathway (p ¼ 0.035) and the olfactory

transduction pathway (p ¼ 0.049). However, the WNT

signaling pathway, which has been strongly linked to

T2D58–60 and which ranked as a top pathway in previous

analyses,17 as well as the three other pathways, including

galactose metabolism, pyruvate metabolism, and T2D mel-

litus, were not among the top hits in our study. Among

these four pathways that were not replicated, galactose

metabolism (13 genes with eSNPs) and T2D (15 genes

with eSNPs) pathways were not represented in our analysis

because the number of genes with eSNPs in these pathways

did not reach our 20–200 selection criteria (p ¼ 0.263 and

0.102, respectively, in the set size threshold relaxed test);

the WNT signaling pathway and the pyruvate metabolism

pathway had enrichment p values of 0.076 and 0.373,

respectively. One possible explanation for the discrepancy

could be the limited coverage of representative SNPs for
erican Journal of Human Genetics 86, 581–591, April 9, 2010 587



each pathway. For instance, certain GWAS SNPs in these

pathways may not affect gene expression, but may instead

alter posttranscriptional mechanisms such as mRNA

splicing or protein function. In other words, eSNP selec-

tion based on the GGE might have missed classes of impor-

tant functional GWAS SNPs and thus caused a loss of

power. Additionally, our GGE cohorts might not be pow-

ered enough to pick up all relevant eSNPs. First, the eSNPs

used in this study were from liver and adipose tissues.

Although these are relevant tissues for T2D, other key

tissues such as islet, muscle, and brain were not available

for eSNP discovery, and hence ~30% of the tissue-specific

eSNPs were likely missing from our analysis. Second,

studying gene expression in non-T2D individuals may

have caused some relevant eSNPs to go undetected. Our

first GGE cohort was a population-based random sample,

whereas the second was an obese cohort; hence, neither

represented individuals that were specifically sampled

on the basis of T2D status. Third, the sample sizes of

the GGE cohorts are limited and so lack power to detect

more modestly sized effects. Indeed, when comparing

the eSNP findings from the two cohorts, 20.6% liver eSNPs

identified from the first cohort were identified as liver

eSNPs in the second cohort, supporting our speculation

of limited eSNP coverage from cohorts of different sample

sizes and sample characteristics. In our analysis, we pooled

the eSNPs from the two cohorts in the three tissues as a

starting point, mainly to improve power to detect path-

way-based associations. To further address the caveats

associated with limited coverage of representative pathway

SNPs, a more comprehensive functional annotation of

SNPs in additional key physiological tissues from larger

populations are needed, and disease-specific samples that

incorporate alternative splicing, noncoding RNA, proteo-

mics, metabolomics, and possibly other biological pro-

cesses, such as epigenetics, will be needed.

Because DIAGRAM has only summary-level statistics

available, we did not use the permutation-based signifi-

cance test. Instead, we used a Komogorov test to compare

the representative eSNP PT2D to the uniform distribution.

Because it is not common to have two representative eSNPs

in one LD block, the bias caused by underlying LD is not

expected to be severe. In the subtraction algorithm, we

assumed that the same allelic effect direction was reported

in the DIAGRAM and WTCCC results. This assumption

holds for most SNPs, but will cause bias in Pnon-WTCCC

estimates for the SNPs in which the opposite allelic effects

were detected in the two studies. The validation p values

of the pathways from non-WTCCC samples are moderately

significant or only suggestive; therefore, future studies will

be needed to fully explore these findings.

In conclusion, our results demonstrate the potential

applicability of integrating the GGE studies and pathway-

based approaches to the interpretation and further mining

of GWAS data. The concept is that intuitive and straightfor-

ward: SNPs that are associated with gene expression in

disease-relevant tissues are more likely to be functionally
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relevant SNPs; thus, leveraging this information can poten-

tially provide significant power to identify disease path-

ways. In the span of just a few short years in which large-

scale GWAS have been carried out, the realization that

tractable drug targets and clinically useful biomarkers of

disease are not immediately falling out of the data has for

some reduced the enthusiasm for the GWAS approach,

intensifying the debate over whether GWAS are the best

strategy to elucidate the causes of disease.63–65 This integra-

tion of eSNPs and well-defined biological pathways

provides a novel approach for identifying disease suscepti-

bility paths rather than the single SNPs or genes tradition-

ally identified through GWAS and thus can potentially

extract value from the wealth of data currently being gener-

ated by GWAS. Although the GO and other pathway

databases will no doubt be of use in searching for enrich-

ments similar to that which was done for the KEGG path-

ways, the primary aim is to present this new approach to

leveraging eSNP data as a filter to enhance power to detect

the enrichments. Diabetes pathogenesis involves many

pathways operating in different tissues and distinct physio-

logical processes, such as blunted insulin signaling and

failure of beta cells to compensate by producing more

insulin. Our approach borrows the strength of GGE, which

provides putative functional bridges between GWAS SNPs

and candidate genes or pathways; it thus represents an

advance in helping to identify biological mechanisms

underlying GWAS findings.
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